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We present a formalism of the transition matrix Monte Carlo method. A sto-
chastic matrix in the space of energy can be estimated from Monte Carlo simu-
lation. This matrix is used to compute the density of states, as well as to con-
struct multi-canonical and equal-hit algorithms. We discuss the performance of
the methods. The results are compared with single histogram method, multi-
canonical method, and other methods. In many aspects, the present method is
an improvement over the previous methods.
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1. INTRODUCTION

The Monte Carlo technique (1) has served us well in the study of equilibrium
statistical mechanics and other fields. The traditional local Monte Carlo
method is simple, extremely general, and versatile. However, there are some
intrinsic drawbacks. First, the convergence of the results to the exact values
is slow. The basic probabilistic nature has limited the Monte Carlo error to
decrease as 1/`t, where t is Monte Carlo sweeps or computer time. With
exception of quasi Monte Carlo (2) for numerical integration, as long as we
use a probabilistic approach, it does not appear possible to overcome this
barrier. Most of the work to improve the efficiency of Monte Carlo method
has been via variance reduction, (3, 4) which reduces the value of coefficient
in front of the 1/`t law. Next, while the traditional Monte Carlo method
is good for computing expectation values such as the internal energy and
its derivatives, it is more difficult to compute the free energy or entropy. (5)



Over the last few decades, a number of methods have been developed
to compute the density of states. The histogram method (6) and the multiple
histogram method (7) can be regarded from this point of view. The multi-
canonical method (8) in some sense is also a computation of the density of
states. Both of these methods involve the re-weighting of probabilities to
construct the canonical distribution. Oliveira et al. (9) proposed a broad
histogram method, in which the density of states is also computed from
simulation.

If the density of states can be computed with sufficient accuracy, then
most thermodynamic quantities can be obtained with little further effort.
This includes the moments of energy, entropy, and free energy. Moreover,
the results are obtained as a continuous function of temperature from a
single simulation. In this paper, we present such a method and study its
efficiency. This method includes the use of a transition matrix, (10) a sto-
chastic matrix defined in the space of energy, and a class of related simula-
tion algorithms. (11–13) The present method has the elements of both the
broad histogram method and multi-canonical method. The flat-histogram
algorithm offers an effective way to compute density of states n(E) for all
energies E. With its multi-canonical element, it also offers fast dynamics
for systems at first-order phase transitions. The use of transition matrix
improves the efficiency of data analysis.

In the next section, we shall discuss the formalism and the essential
aspects of the method. We also present the results of some numerical tests
and discuss the connections of our method with previous methods.
Appendix A gives a calculation of an exact transition matrix for a one-
dimensional kinetic Ising model; in Appendix B, we derive a Fokker–
Planck type equation for transition matrix dynamics.

2. FORMALISM

2.1. Markov Chain Monte Carlo

The Monte Carlo method aims at generating samples s with probabil-
ity distribution P(s), where s is a particular state of the system. In the
Ising model, which we shall use as a concrete example, s is a vector of
all the spins {s1, s2,..., sN}, where si=±1. In the usual application of
the Monte Carlo method, the invariant distribution P(s) is given by the
canonical distribution (Gibbs distribution) exp(−E(s)/kBT). However,
this need not be the case. In the equal-hit ensemble that we shall discuss
later, P(s) is not known, and is not even unique. Nevertheless, it is still a
valid Monte Carlo algorithm that can have significant advantages.
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A sequence of states or samples is generated by a Markov chain (14)

with transitions between states described by a matrix W(sQ s −). This is the
conditional probability that state moves to s − given that the current state
is s. This matrix is known as a stochastic matrix and it must satisfy

C
sŒ

W(sQ s −)=1, W(sQ s −) \ 0. (1)

There is considerable freedom in choosing the matrix W, but the most
important condition (or criterion) is detailed balance

P(s) W(sQ s −)=P(s −) W(s −Q s). (2)

A Markov chain that satisfies the above condition is called a reversible
Markov chain. This condition guarantees the invariance of the probability
P(s) with respect to the transition matrix W, i.e.,

C
s

P(s) W(sQ s −)=P(s −). (3)

Repeated applications of W to an arbitrary probability distribution make
the resulting probability distribution converge to a fixed point, P(s). We
shall not elaborate on the condition that an invariant probability distribu-
tion exists and is unique. Roughly speaking, we must be able to make
transitions in a finite numbers of steps from any initial state to any final
state. This is known as ergodicity.

The standard Metropolis algorithm (15) is to take

W(sQ s −)=S(sQ s −) min 11,
P(s −)
P(s)
2 , s ] s −, (4)

where S(sQ s −) is a selection function—a conditional probability of
attempting to go to state s − given that the current state is s. Within the
above formulation, it is required that the S matrix is symmetric,

S(sQ s −)=S(s −Q s), (5)

although this condition can also be relaxed. (16) Following Oliveira, (17) we
call this condition microscopic reversibility. The diagonal elements of W
are fixed by the normalization condition, Eq. (1). Note that the diagonal
elements are not needed explicitly in a computer simulation.

In a computer implementation, a move is selected according to S
(e.g., pick a site to flip a spin). The move is made if a random number t
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between 0 and 1 is less than the flip rate min(1, P(s −)/P(s)); otherwise, it
is rejected, and the original configuration s is counted once more as the
next configuration in a Monte Carlo move.

Clearly the above formalism is very general. Although the procedure
can be used to sample any distribution, it has its limitations. One drawback
of standard algorithm is that the configurations generated are correlated.
These correlations severely limit the efficiency of the method near phase
transitions or for models with competing interactions and many local
minima. A number of methods have been proposed to address this problem,
such as the cluster algorithms, (18) the multi-canonical methods, (8, 19, 20)

replica Monte Carlo, (21) and simulated tempering. (22) The flat histogram
method presented in this paper is similar in some aspects to the multi-
canonical method. The implementations of flat histogram method and
transition matrix based methods are very simple and efficient.

2.2. Histogram

The concept of an energy histogram is essential to all of these
methods. Other types of histogram of macroscopic quantities can be easily
defined in analogy to the energy histogram and may be useful in some
contexts, such as the joint histogram of energy and total magnetization. We
define the energy histogram (in the case of a discrete energy spectrum) as
the number of instances of each value of the energy E generated during a
Monte Carlo simulation; we denote the histogram by H(E).

The histogram is important because of its direct relationship to the
probability distribution of the energy in the system being simulated. If the
probability of a state s is given by P(s) for a given simulation, then

h(E)=C
s

dE(s), EP(s)= C
E(s)=E

P(s) (6)

is the probability that the system has an energy E. If the Monte Carlo
simulation in question generates m configurations, then the expectation
value of the histogram (average of the histogram over an infinite number of
similar Monte Carlo runs) is given by

OH(E)P=mh(E). (7)

For the canonical distribution, we have

P(s)=f(E(s))/Z=Z−1 exp(−E(s)/kBT), (8)
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where Z is the partition function,

Z=C
s

exp 1 −E(s)
kBT
2 , (9)

then h(E)=n(E) f(E)/Z. We define the density of states (for systems
with discrete energy spectrum)

n(E)= C
E(s)=E

1 (10)

as the number of states with energy E.
Note that the configuration dependence of the probability is only

through energy implicitly. Thus, two configurations with the same energy
will have the same probability. We shall call this the microcanonical prop-
erty. The transition matrix Monte Carlo to be discussed below relies on this
property crucially, while allowing the function f(E) to be arbitrary.

The histogram H(E) sampled during a Monte Carlo run (the number
of visits to energy E) is an estimator to h(E), i.e., H(E) 3 h(E). The usual
canonical Monte Carlo method is equivalent to using the number of visits
H(E) to compute the moments of E at the simulation temperature T0. The
histogram method of Ferrenberg and Swendsen (6) is based on the simple
observation that density of states can be estimated (up to a proportionality
constant) by n(E) 3 H(E)/f(E). With this information, the moments of E
can be extrapolated for nearby temperatures as well.

Clearly, if we can determine n(E), then most of the energy related
thermodynamic averages can be determined, such as internal energy, speci-
fic heat, free energy, and entropy. The free energy is given then by

F=−kBT ln Z=−kBT ln C
E

n(E) exp(−E/kBT). (11)

Other quantities of interest can also be computed if ‘‘histograms’’ (as a
function of E) of such quantities are also collected,

OQPT=
;E OQPE n(E) exp(−E/kBT)

;E n(E) exp(−E/kBT)
%
;E OQPE H(E)

;E H(E)
. (12)

The main objective of this paper is to show that we can determine the
density of states n(E) for the whole range of energy with Monte Carlo
sampling efficiently.
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2.3. Detailed Balance for Histogram

The transition matrix defined below serves a dual purpose—for the
computation of the density of states and for the construction of flat histo-
gram algorithms. There are a number of ways to look at the transition
matrix based methods. We shall take the detailed balance equation, (2), as
a basic starting point. Consider all initial states s with energy E and all
final states s − with energy E −. Each pair of states {s, s −} has a detailed
balance equation. Some of the equations may be the identity 0=0 if the
transition by a single-spin flip is not possible. Summing up the detailed
balance equations for all the states s with a fixed energy E and all the
states s − with a fixed energy E −, we have

C
E(s)=E

C
E(sŒ)=EŒ

P(s) W(sQ s −)= C
E(s)=E

C
E(sŒ)=EŒ

P(s −) W(s −Q s). (13)

Assuming that the configurational probability distribution is a function of
energy only, i.e., P(s) 3 f(E(s)), and defining the transition matrix in
energy as

T(E Q E −)=
1

n(E)
C

E(s)=E
C

E(sŒ)=EŒ
W(sQ s −), (14)

we have

n(E) f(E) T(E Q E −)=n(E −) f(E −) T(E −Q E). (15)

As a consequence of W being a stochastic matrix, T(E Q E −) is also a
stochastic matrix:

C
EŒ

T(E Q E −)=1, T(E Q E −) \ 0, (16)

with the histogram h(E)=n(E) f(E)/Z being the invariant distribution:

C
E

h(E) T(E Q E −)=h(E −). (17)

Similar definition to Eq. (14) was introduced in ref. 23 in a different
context.
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2.4. Broad Histogram Equation

Because the matrix T(E Q E −) is composed of two factors, only the
second of which depends on the specific ensemble under consideration, it is
convenient to refer all calculations to the ‘‘infinite-temperature’’ transition
matrix,

T.(E Q E −)=
1
N

ON(s, E −−E)PE, (18)

where N is the number of spins, or more generally, the number of allowed
moves from a given state. If we define DE=E −−E, we then have

ON(s, DE)PE

N
=

1
n(E)

C
E(s)=E

N(s, DE)
N

= C
E(s)=E

C
E(sŒ)=EŒ

S(sQ s −)
n(E)

. (19)

In a random single-spin-flip dynamics, S(sQ s −) equals 1/N if the two
configurations s and s − differ by one spin, and zero otherwise. Thus, the
second summation over s − gives the number N(s, E −−E) of configurations
of energy E − that can be reached from s of energy E by a spin flip. The first
summation is over the configurations with energy E, i.e., a microcanonical
average of the quantity N(s, DE). The constancy of S(sQ sŒ) for the non-
zero matrix elements is important for this interpretation of ON(s, DE)PE.
The quantity N(s, DE) is central to the current method, as well as to the
broad histogram method. (24)

Within the single-spin-flip dynamics, the matrix T is then given by

T(E Q E −)=T.(E Q E −) a(E Q E −), (20)

where any flip rate a(E Q E −) can be inserted once T.(E Q E −) has been
determined. Substituting Eq. (20) into the energy detailed balance equation
(15), we can cancel f(E) and a(E Q E −) as for a valid dynamics which
generates distribution P(s)=f(E(s))/Z, we have the usual detailed balance,

a(E Q E −)
a(E −Q E)

=
f(E −)
f(E)

. (21)

The final equation is known as broad histogram equation, initially pre-
sented by Oliveira et al., (9)

n(E)ON(s, E −−E)PE=n(E −)ON(s −, E−E −)PEŒ. (22)
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In terms of the transition matrix notation, this becomes

n(E) T.(E Q E −)=n(E −) T.(E −Q E). (23)

The name ‘‘broad histogram’’ equation is historical and clearly a misnomer.
The above equation has a very simple interpretation. Consider all pairs of
states s with energy E and states s − with energy E − such that the moves (or
transitions) between s and s − are allowed. These states correspond to states
for which the matrix elements in S are non-zero. Due to the microscopic
reversibility, if s to s − is allowed, so is the reverse move from s − to s. There
are two ways to count the total number of moves, summing up from states
with energy E or summing up from states with energy E −. The state s has
N(s, E −−E) ways to move into energy E −. The total number of moves to
energy E − from all states with energy E is ;E(s)=E N(s, E −−E). By the
reversibility requirement, we must have

C
E(s)=E

N(s, E −−E)= C
E(sŒ)=EŒ

N(s −, E−E −). (24)

A microcanonical average of any quantity is defined by

OQPE=
;E(s)=E Q(s)
;E(s)=E 1

=
1

n(E)
C

E(s)=E
Q(s). (25)

Using this definition, the previous Eq. (24) is reduced to Eq. (22). This
argument is first put forth by Oliveira (17) and by Berg and Hansmann. (25)

Clearly, the result does not depend on what type of moves we use, so long
as it satisfies the reversibility condition.

2.5. TTT Identity

The detailed balance condition imposes a restriction on the transition
matrix, which we call the TTT identity. Consider three distinct energy
levels, E, E −, and E', for which energy transition matrix elements among
them are nonzero. Let us write down three equations associated with the
transitions among them:

h(E) T(E Q E −)=h(E −) T(E −Q E), (26)

h(E −) T(E −Q E')=h(E') T(E'Q E −), (27)

h(E') T(E'Q E)=h(E) T(E Q E'). (28)
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Multiplying the left and right sides of the three equations together and
assuming that the product h(E) h(E −) h(E') is nonzero, we can cancel this
factor from the equation and obtain:

T(E Q E −) T(E −Q E') T(E'Q E)=T(E −Q E) T(E Q E') T(E'Q E −).
(29)

This is the TTT identity. The importance of this equation is that it does not
require the knowledge of the stationary distribution to check for agreement
of the data with the condition of detailed balance. While for normal Monte
Carlo simulation, the detailed balance is built-in directly to the transition
matrix W, this is not the case for some of the transition matrix Monte
Carlo schemes that have been proposed. One implication of detailed
balance violation is that the microcanonical property that all states with
the same energy have the same probability is violated. This detailed balance
violation for the initial choice of Oliveira’s broad histogram dynamics,
a particular choice of the transition rate W, has been demonstrated expli-
citly for small systems. (11)

The significance of the TTT identity is that given the probability h of
energy having value E, if we can predict h' at energy E' by the detailed
balance equations in two ways, one directly from E to E', one by two
hops, from E to E −, and then E − to E', then the TTT identity guarantees
that the results are exactly the same. That is,

h'=h
T(E Q E')
T(E'Q E)

, (30)

and

h̃'=h −
T(E −Q E')
T(E'Q E −)

, h −=h
T(E Q E −)
T(E −Q E)

. (31)

The TTT identity says that the two predictions based on the detailed
balance are equal, h'=h̃'.

Detailed balance implies TTT identity. Is the reverse also true? I.e.,
given a complete set of TTT identities, do they imply detailed balance in
the sense of equation h(E) T(E Q E −)=h(E −) T(E −Q E) for all E and E −?
The answer is yes. The TTT identity turns out to guarantee a consistent
(detailed balance) solution involving three jumps, say, E to E −, to E',
to E −−−, versus E to E −−− directly when such jumps are allowed. Therefore,
TTTT identities that follow from detailed balance are automatically ful-
filled and neither provide further information, nor require separate proof.
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Naturally, when we consider adding more complex Monte Carlo moves,
either to improve the efficiency of a calculation or to reflect the nature of a
more complex model, more TTT identities are generated and identities with
more factors of T are automatically satisfied.

We define a quantity to measure the detailed balance violation for
three energy levels for which the transitions among them are nonzero as

v=:1−
T̂(E Q E −) T̂(E −Q E') T̂(E'Q E)
T̂(E −Q E) T̂(E Q E') T̂(E'Q E −)

: , (32)

where T̂( · · · ) is Monte Carlo estimate of T( · · · ). For a single-spin-flip
dynamics with the Metropolis rate, the energy transition matrix is given by
Eq. (20), with a(E Q E −)=min(1, f(E −)/f(E)), thus the above equation is
equivalent to

v=:1−
ON(s, E −−E)PE ON(s −, E'−E −)PEŒ ON(s', E−E')PEœ

ON(s −, E−E −)PEŒ ON(s, E'−E)PE ON(s', E −−E')PEœ

: . (33)

For Ising model where energies are equally spaced, we consider three levels
at E, E+4J and E+8J, where J is the coupling constant. A plot of v for
Ising model is presented in ref. 12.

2.6. Flat Histogram Dynamics

If a configuration has probability P(s)=f(E(s))/Z, then the histo-
gram is H(E) 3 n(E) f(E). A flat histogram is obtained if we take
f(E) 3 1/n(E). A single spin flip with the flip rate min(1, n(E)/n(E −)) can
be used to do the simulation. Lee’s reformulation of multi-canonical
method (19) is essentially this. The trick there is to determine n(E) effi-
ciently. (26)

From the equation describing detailed balance for the transition
matrix, (23), we can write the acceptance rate as

a(E Q E −)=min 11,
T.(E −Q E)
T.(E Q E −)

2 . (34)

This is the first equation derived for flat histogram dynamics, although we
will show below that it is not unique. This rate is first proposed in ref. 11,
and is independently discovered by Li. (27) Unlike the quantity n(E), a good
approximation is already available in the very beginning, since we can
use the instantaneous value N(s, EŒ−E) as a preliminary estimate for
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T.(E Q EŒ). A cumulative average of contributions to T.(E Q EŒ) can be
used as a convenient, and remarkably accurate, approximation for the
microcanonical average. We shall discuss how good this scheme is in a later
section.

There is another equivalent way of looking at the problem. Consider
the energy detailed balance equation in the form

h(E) T.(E Q E −) a(E Q E −)=h(E −) T.(E −Q E) a(E −Q E). (35)

If we require that the histogram is a constant, h(E)=h(E −)=const, then
the spin-flip rate must satisfy the following equation,

a(E Q E −)
a(E −Q E)

=
T.(E −Q E)
T.(E Q E −)

. (36)

Clearly, Eq. (34) satisfies the above equation. Moreover, there is a whole
family of choices of the transition rates. Some of the choices are given in
Table I. It is interesting to explore the flexibility of choices and their per-
formances.

2.7. N-Fold Way

The standard Metropolis algorithm contains two steps. First, a move
is proposed. Next, this move is accepted with probability a(E Q E −) or
rejected with probability 1−a(E Q E −), where 0 [ a(E Q E −) [ 1. Is it
possible to always accept a move without sampling the same configuration
repeatedly? The answer is yes, if we are willing to keep extra information
during the simulation. In the flat histogram method, this extra information
is already there for free. It is precisely N(s, DE).

In an N-fold way simulation (also known as event-driven simula-
tion), (28) we do not change the dynamics; it is fully equivalent to the usual
single-spin-flip dynamics. However, there is a substantial improvement in
efficiency in those situations for which the rejection rate is high. The
method begins by computing the total probability that a move would be
accepted with the standard approach. For the Ising model, this probability
is

A=A(s)=C
N

i=1

1
N

a(E(s) Q E(s̄ i)), (37)

where the factor 1/N is due to the fact that each spin located at site i is
picked up with probability 1/N. The notation s̄ i refers to a configuration
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with the spin at site i reversed in sign. The quantity A is the probability
that any spin is flipped. Since the flip rate depends on the initial and final
energies only, we can simplify the above equation as

A=C
DE

N(s, DE)
N

a(E Q E+DE). (38)

We divide the possible moves into classes according to their energy incre-
ment DE. Within a given class, each spin has the same flipping probability.
We now set the probability of the class with energy change DE being
chosen as

P(DE)=
1

AN
N(s, DE) a(E Q E+DE). (39)

A spin in this class is then chosen at random and flipped with probability
one. As a practical consideration in designing algorithms, we note that the
condition that a(E Q E −) must be between 0 and 1 can now be relaxed
because of the normalization by 1/A in this equation.

In the original algorithm, (28) Monte Carlo time is rescaled to make the
dynamics equivalent to that of the usual algorithm. For the purpose of
calculating averages, we will reweight each configuration to achieve the
same effect. Each configuration s in the original single spin flip has equal
weight. The Monte Carlo average of a quantity Q is computed as

OQP=
1
m

C
m

j=1
Qj. (40)

Here Qj at step j and the subsequent steps could be the same, due to the
possibility of rejecting a move. The probability that a move is rejected
is R=1−A. Thus the life-time of a configuration has the probability
distribution

Pj=(1−R) R j−1, j=1, 2, 3,... . (41)

The average life-time for configuration s is then

[̄=C
.

j=1
j Pj=

1
1−R

=
1
A

. (42)

In the N-fold-way simulation, each move generates a distinct state from the
immediate preceding one; each of these states is supposed to last for a
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duration of [̄, on average. Thus in replacing Eq. (40) the correct formula
for statistical average with N-fold-way simulation is

OQP=C
m

j=1

Qj

A
;C

m

j=1

1
A

. (43)

Naively the computation of N(s, DE) seems to require O(N) basic
steps at each single-spin-flip move. But the effect of changing configuration
by a flip is local, involving only the site in question and its neighboring
sites. We only need to compute the changes in N(s, DE). Thus each move
takes O(1) in computer time. It is few times slower than a corresponding
straightforward single-spin-flip program. The N-fold way does require
extra memory, as a list of spins for each class is required in order to be able
to pick a spin from the class with a computer time of O(1).

2.8. Equal-Hit Algorithms

The flat histogram ensemble in some sense is the best ensemble to
evaluate the density of states, for each energy level is sampled with the
same frequency. However, as we have seen in the N-fold way, this is not
entirely true, as some configurations are weighted more than others. The
equal-hit algorithms (13) generate fresh configurations with equal probability
at each energy. There is a very interesting aspect of these algorithms—the
histograms in such algorithms are not unique and depend on the details of
the dynamics.

The energy histogram in the normal single-spin-flip dynamics (that is,
not in the N-fold way) is computed as

h(E)=OdE(s), EP, (44)

i.e., the contribution to the histogram from the configuration s of energy
E(s) is 1 for E=E(s) and zero for other energies. The angular brackets
refer to Monte Carlo average. In the N-fold way, the statistics are weighted
with 1/A to get the equivalent result in the original dynamics, so we have

h(E)=7dE(s), E
1

A(s)
8

N

;7 1
A(s)
8

N
. (45)

The angular brackets indicate simple arithmetic average over the samples
generated in an N-fold way. We put a subscript N to emphasize the fact
that the average is over N-fold way samples. We define the hits as

u(E)=OdE(s), EPN. (46)
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This quantity measures the average number of fresh configurations gener-
ated at each energy, since in the N-fold way, each configuration s in the
sample is distinct from the previous sample due to the fact that there is no
rejection in N-fold way. We can relate the histogram to the hits by

h(E)=u(E)O1/APE, N/O1/APN, (47)

where

O1/APE, N=

7dE(s), E
1

A(s)
8

N

OdE(s), EPN
=OAP−1

E (48)

is the average of inverse acceptance rate for states of fixed energy in the
N-fold way samples. Note that this is not the same as the microcanonical
average of 1/A, which in general is

OQ(s)PE=
OQ(s)/APE, N

O1/APE, N
. (49)

Substituting Eq. (47) into energy detailed balance equation, (35), we have

u(E)O1/APE, N T.(E Q E −) a(E Q E −)

=u(E −)O1/APEŒ, N T.(E −Q E) a(E −Q E). (50)

Equal-hit is realized if the flip rate satisfies the above equation with
u(E)=u(E −)=const. For example,

a(E Q E −)=min 11,
O1/APEŒ, N T.(E −Q E)
O1/APE, N T.(E Q E −)

2 . (51)

Other choices are also possible; some of them are given in Table I.
We note that since the transition rate depends on the underlying

dynamics through A, there is no guarantee that the histogram h(E) is
unique. In fact, in the equal-hit dynamics, h(E) is not known, and has to
be determined self-consistently through the equal-hit dynamics. We note
that A is defined by Eq. (37) using a, which uses A in Eq. (51). There is also
a peculiarity that h(E) diverges for some choices of the transition rates at
the ground state energy.
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3. NUMERICAL TESTS

In this section, we evaluate the performance of various proposed
algorithms. In Table I, we list a dozen possible choices of flip rates,
a(E Q E −). For each rate, the simulation can be implemented with or
without the N-fold way.

As the flip rates require the knowledge of exact microcanonical
average, which is not available, we use the crucial approximation

T.(E Q E+DE) %
1

H(E) N
C
m

j=1
dE(sj), EN(s j, DE), (52)

where energy histogram H(E) is the number of samples generated for a
given energy, H(E)=;m

j=1 dE(sj), E, m is the total number of samples
generated so far, and s j is the configuration at move j in the algorithm. We
collect a sample after every attempt of moves. The above expression is
suitable for the normal single-spin-flip algorithm. In N-fold way, the sta-
tistics have to be weighted by 1/A(s). Whenever information is not avail-
able, we set the flip rate to 1. This biases the system to visit unexplored
energy levels.

Table I. A List of Choices of the Flip Rates and Their Errors in Transition Matrix

with Respect to the Exact Results on a 5×5 Square Lattice for the Ising Modela

No. Rate a(E Q E −) ET `t Remark

−1 min(1, n(E)/n(E −)) 5.93 multi-canonical
0 min(1, a/b) 6.43 original flat histogram
1 min(1, aU/(bV)) 6.74 standard equal-hit
2 aU 9.5
3 1/(bV) t−0.2 or not converge
4 1/V if aU < bV, else a/(bV) t−0.3 or not converge
5 a 7.0
6 1/b 7.2
7 a/(a+b) 6.4
8 (a+b)/b 9
9 N/N(s, E −−E) definitely not converge

10 U/b 8.1
11 a/V t−0.2 or not converge
12 U if aU < bV, else aU/b 14

a In the formula, we have a= 1
N ON(s −, E−E −)PEŒ, b= 1

N ON(s, E −−E)PE, U=O1/A(s −)PEŒ, N,
V=O1/A(s)PE, N, where E is the current energy and E − is proposed new energy. In simula-
tion, the exact microcanonical average O · · ·PE is replaced by a cumulative average.
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In the above method, the simulation is started automatically, without
an iteration process. This bootstrap is efficient and is also correct in the
sense that it converges. We shall call the above method iteration 0. Strictly
speaking, iteration 0 need not be a valid Monte Carlo algorithm as the
transition rates are fluctuating quantities, thus the normal Markov chain
theory for convergence does not apply. However, numerical results do
support convergence, although a rigorous proof is lacking.

3.1. Histograms

Figure 1 presents energy and hit histograms for a 16×16 square lattice
for an 8-state ferromagnetic Potts model. As expected, the energy histo-
gram is flat for the flat histogram algorithm. The hits are roughly propor-
tional to the number of different configurations generated. This is not
exactly true since in the N-fold way, we can only guarantee that the next
configuration is different from the immediate preceding one. The new con-
figuration can be the same with configurations in earlier steps. By requiring
that the hits are equal for all energies, we obtain the equal-hit algorithm
with the corresponding energy and hit distribution shown in the lower part
of the figure.

Due to the statistical nature of the histogram and also due to the fact
that the energy range is explored similarly to a random walk, the histogram

Fig. 1. Energy histogram H(E) and number of hits U(E) in N-fold-way algorithms applied
to the 8-state ferromagnetic Potts model on a 16×16 lattice with 107 Monte Carlo sweeps.
The top part is the standard flat histogram algorithm 0; the bottom part is the equal-hit algo-
rithm 1. The vertical scales are arbitrary.
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is not exactly flat, but fluctuates around a mean. During a simulation of
length t (=j/N) of Monte Carlo sweeps, we have generated t/y indepen-
dent samples, where y is correlation time related to the histogram. These
samples are distributed to order N bins of different energies (for the two-
dimensional Ising model, it is exactly N−1 bins). Thus, each bin has about
t/(yN) independent samples. The relative fluctuation of the histogram is
(asymptotically for large t)

dH(E)
H(E)

%=yN
t

. (53)

Although the above argument applies for the fluctuation between different
runs, it is also reasonable to apply it to the fluctuation among different
energies, since the samples between different energies are assumed inde-
pendent. The same analysis also applies to the hits in equal-hit algorithm.

Equation (53) can be used as a definition for the correlation time y.
A perfect Poisson process has a constant correlation time (y=1); an ideal
random walk in energy is y3 N. We compute y for the nearest neighbor
Ising model on one-dimensional chain, two-dimensional square lattice, and
three-dimensional cubic lattice. We found that numerically Eq. (53) is
approximately satisfied, with the correlation time growing with size, y3 L
in one dimension, y3 L0.7 in two dimensions, and y3 L1.2 or L2 in three
dimensions, see Fig. 2. The algorithm 0 becomes inefficient (slow conver-
gence) for large lattices in two and three dimensions. We shall discuss this
further later on.

Fig. 2. Correlation times defined by Eq. (53) for the Ising model versus lattice linear size L
(=N1/d). Diamonds are for one-dimensional chain with algorithm 0 and N-fold way; solid
circles are for square lattice with algorithm −1; open squares are for square lattice with algo-
rithm 0; triangles are for cubic lattice with algorithm 0 and N-fold way.
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3.2. Rate of Convergence

We tested the zeroth iteration algorithms for convergence to the exact
values for the infinite temperature transition matrix, T.(E Q E −)=
1
NON(s, E −−E)PE, on a 5×5 Ising square lattice model. The exact result
T. is obtained by an exhaustive enumeration. Figure 3 is a plot of overall
error in the N-fold-way simulation data T̂, defined by

ET= C
E, EŒ

|T̂.(E Q E −)−T.(E Q E −)|, (54)

versus Monte Carlo simulation length t (averaged over many runs). The
Monte Carlo times are in units of sweep (N moves). The asymptotic value
ET `t for large t is listed in Table I, which characterizes the rate of con-
vergence.

As expected, the best algorithm is algorithm number −1, when the
input n(E) is exact. The algorithms (or rates) number 0, 1, and 7 are only
slightly worse than the best. Numbers 5 and 6 are the second best. The rate
numbers 3, 4, and 11 may still converge extremely slowly or not converge
at all. We do not understand why this is so. Number 9 does not converge,
which we know since it does not satisfy detailed balance equation. Using
instantaneous values rather than average values is clearly wrong.

Errors for single-spin-flip algorithm are about 1.5 larger than with the
N-fold-way, or about 1.52 % 2.3 less efficient in Monte Carlo steps.
However, since the N-fold way is slower in CPU time than single-spin flips

Fig. 3. Average errors in the calculated transition matrix T. on a 5×5 Ising model in N-fold-
way simulation. The numbers correspond to various choices of flip rates given in Table I.
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by a factor of 2 or more, the two methods are comparable in overall effi-
ciency in this particular instance.

From the above results we conclude that even the zeroth iteration
converges to the correct results. This does not mean that the rate of con-
vergence is uniform in E. In fact, we found for large lattices, the violation
of detailed balance, v, is large at the two ends of the energy spectrum. (12)

3.3. Determining the Density of States

There are a number of different ways of determining the density of
states. The matrix T.(E Q E −) has eigenvalue 1 with corresponding left
eigenvector n(E). However, the solutions of the eigenvalue problem are
numerically unstable. The broad histogram equation, (22), can be used. In
the simplest application, we can ignore the extra equations, and consider
only these with smallest DE=E −−E, and obtain solution from iteration,

ln n(E −)=ln n(E)+ln
T.(E Q E −)
T.(E −Q E)

. (55)

Since there are more equations of this type than the unknown n(E), we can
use least-squares method. Our experience suggests that we should view the
problem as an optimization with nonlinear constraints.

There are two possible models for an optimization solution. Introduc-
ing the optimization variable S(E)=ln n(E), consider,

minimize C
E, EŒ

1
s2

E, EŒ

1S(E −)−S(E)− ln
T.(E Q E −)
T.(E −Q E)

22, (56)

subject to any known constraints. For the d-dimensional Ising model, we
have

S(−E)=S(E), S(−dJN)=ln 2, C
E

exp(S(E))=2N. (57)

The three conditions are the symmetry between low and high energies, the
degeneracy for the ground states, and the total number of states. The
weight s2(E, E −) is the variance of the Monte Carlo estimates of the quan-
tity ln(T.(E Q E −)/T.(E −Q E)). The above minimization problem is
essentially a linear problem. We solve it by an iterative method.

The second, different formulation of the optimization is expressed in
variable T.(E Q E −),

minimize C
E, EŒ

1
s2

E, EŒ

(T.(E Q E −)−T̂.(E Q E −))2, (58)
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where T̂.(E Q E −) is Monte Carlo estimate with error sE, EŒ, and T.(E Q E −)
is unknown. The minimization is subject to the conditions

0 [ T.(E Q E −) [ 1, C
EŒ

T.(E Q E −)=1,

D T.(E Q E −)=D T.(E −Q E). (59)

The last one is symbolically a TTT identity, see Eq. (29) for a concrete
example. For the Ising model, there is also an additional symmetry relation

T.(E Q E+DE)=T.(−E Q −E−DE). (60)

This set of constraints is much more difficult to handle. Intuitively, this
second optimization problem should give better result than the first one.
However, this is not the case, at least for the two-dimensional Ising model.
For this model, optimization in T.( · · · ), Eq. (58), gives twice the error
(En defined below) of the first optimization method. A simple iteration with
Eq. (55) and DE=±4J has 4 times the error comparing to optimizing
solution of Eq. (56) and (57).

Figure 4 is another convergence test plot for algorithm 0 and a two-
stage simulation, both with N-fold way, on the two-dimensional Ising
square lattices. In this plot, we consider the relative error per energy level
for density of states,

En=
1

N−1
C
E

: n̂(E)
n(E)

−1 : % O|Ŝ(E)−S(E)|P. (61)

The normalization by N−1 is to exclude ground state energy and its
symmetric state energy, for which the exact values are imposed. The exact
value n(E) is obtained according to ref. 29; n̂(E) is Monte Carlo estimate
obtained from solving Eq. (56) with sE, EŒ=1. We used small lattices in
order to compare with exact density of states, which is available only for
L [ 50.

We see signs of slower convergence and difficulties for large lattice
sizes for algorithm 0. A two-stage simulation improves the efficiency to
that of using the exact density of states in flip rates. In a two-stage simula-
tion, we first apply the algorithm 0 using cumulative average in the flip
rates; we then apply algorithm −1 (Lee’s method of multi-canonical algo-
rithm), using the density of states obtained in the first step. Both steps use
the same number of Monte Carlo sweeps. With the two-stage algorithm,
the slowing down is roughly yn 3 L1.5, using a similar definition as given in
Eq. (53).
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Fig. 4. Average relative error En in density of states as a function of Monte Carlo sweep t.
Open circles are for algorithm 0; solid triangles are for a two-stage algorithm (algorithm 0
followed by algorithm −1). For each set, the system sizes are 4×4, 8×8, 16×16, and 32×32,
from bottom to top.

3.4. Dynamic Characteristics of the Algorithms

We have already presented two correlation times — y characterizes the
convergence of the histogram and yn characterizes the convergence of the
density of states. Both of them showed the effect of reduced performance
when the size is increased. By definition of the correlation times y and yn,
they also measure roughly how many Monte Carlo sweeps are needed to
generate independent samples. Of course, in yn, it also reflects the effect of
data analysis methods.

Another measure of the performance of algorithms is the tunneling
time. In our study, we define the tunneling time as the average Monte
Carlo sweeps that the system in the lowest energy state goes to the highest
energy state, or vice versa. More precisely, as soon as a ground state is
reached, we record the current Monte Carlo move j1, and then look for the
highest energy, which may happen at j2. We then look for the ground state
again. The difference (j2 −j1)/N consists of one sample for the tunneling
time.

The tunneling time for the two-dimensional Ising model is very well
described by yt % 0.4L2.8 (in units of sweep). An ideal random walk in the
space of energy would have an exponent of 2 (yt 3 N in general). The
dynamics is close but not quite random walk in energy.

The spin glass is one of the most difficult systems to simulate. The
performance of the flat histogram algorithm for the two-dimensional ±J
spin glass is presented in ref. 30. In Fig. 5, we show the tunneling time as
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Fig. 5. Tunneling time dependences on system sizes for three-dimensional ±J spin glasses.
The diamonds are from single-spin flip (without N-fold way) with algorithm 0; the circles are
N-fold-way algorithm 0; and the triangles are N-fold-way algorithm 1.

a function of system linear size L for three algorithms (algorithm 0 and 1
with N-fold way, and algorithm 0 without N-fold way) on the three-
dimensional Ising spin glass. The gain from N-fold way as comparing to
standard single-spin-flip is by a constant factor. The equal-hit algorithm is
about a factor of 6 faster in tunneling times than the algorithm 0 without
N-fold way. Unfortunately, this gain is not very significant as the N-fold-
way program runs few times slower than standard single-spin flips. The
slowing down exponent is about 8, this is comparable to that of multi-
canonical method. (31)

4. ENERGY TRANSITION MATRIX DYNAMICS

The stochastic matrix W describes Monte Carlo dynamics in the space
of spin configurations. Such state space is extremely large, containing 2N

states, from which Monte Carlo moves sample only a very small fraction.
On the other hand, we introduced a new stochastic matrix T in a coarse-
grained space of energy. The matrix W and T are related by Eq. (14). We
shall call the dynamics induced by this stochastic matrix energy transition
matrix dynamics. In discrete time step j, the dynamics describes the evolu-
tion of the histogram hj(E) as

hj+1(E)=C
EŒ

hj(E −) T(E −Q E). (62)
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What is the significance of this dynamics? The dynamics describes the
change of energy distribution through the following single-spin-flip moves:
given the current state s with energy E, pick a new state s − with the same
energy E among all the n(E) degenerate spin states with equal probability,
flip a spin according to the usual spin flip rate as embedded in W. As we
can see, since the state changes at random to a completely new state of the
same energy to try another flip, its dynamics is substantially faster than
single spin flip or even cluster flip. Unfortunately, such dynamics is not
realizable on a computer, but it is of interest for comparison with realizable
algorithms.

We can say more about the dynamics given by Eq. (62). Let us first
convert the equation into continuous time which is more convenient for
analytic treatment, and which is a valid description for moderately large
system. Introducing t=j/N and Dt=1/N and define h(E, j/N)=hj(E),
we have

h 1E,
j+1
N
2−h 1E,

j
N
2=C

EŒ
h(E −, j/N)(T(E −Q E)−dEŒ, E). (63)

Dividing both side by 1/N, taking the limit of large N, we have

“h(E, t)
“t

=C
EŒ

h(E −, t) T̃(E −Q E), (64)

where the continuous time transition matrix T̃ is related to the discrete step
matrix by T̃(E Q E −)=(T(E Q E −)−dE, EŒ) N.

Two results were initially reported in ref. 10. Detailed derivations will
be given in Appendices. Firstly, an explicit form of T̃ can be given for the
one-dimensional Ising model with Glauber flip rate, as

T̃(k Q k−1)=
k(2k−1)

N−1
(1+c), (65)

T̃(k Q k+1)=
(N−2k)(N−2k−1)

2(N−1)
(1− c), (66)

where k=(E/J+N)/4, c=tanh(2J/(kBT)), and N is the chain length.
The diagonal term is computed from the relation

T̃(k Q k−1)+T̃(k Q k)+T̃(k Q k+1)=0, (67)

and the rest of the elements T̃(k Q k −)=0 if |k−k −| > 1. Secondly, equation
(64) is continuous in time but still discrete in energy. We can go one step
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further to consider the limit of both time and energy to be continuous. For
transition matrix associated with canonical ensemble, we found a partial
differential equation in such limit as

“h(x −, t −)
“t −

=
“

“x −
1“h(x −, t −)
“x −

+x −h(x −, t −)2 , (68)

where x − and t − are properly scaled energy fluctuation and time:

x −=
E−u0N
(Nc̄)1/2 , u0N=Ē, (69)

and t −=At with

A= lim
NQ.

C
E

T̃(E Q Ē), (70)

where u0 is the average energy per spin and c̄=kBT2c is the reduced speci-
fic heat per spin. This equation, (68), is equivalent to the one-dimensional
quantum harmonic oscillator equation, thus the analytic solutions are
readily obtained.

The most important consequence of this equation is that the relaxation
time is proportional to the specific heat of the system. This result can also
be seen from a less rigorous point of view. Since this artificial dynamics
involves a random walk on the probability distribution of the energy, the
characteristic relaxation time will be proportional to the square of the
energy fluctuation, O(E−OEP)2P, which is in turn proportional to the
specific heat.

5. CONNECTIONS WITH OTHER METHODS

5.1. Single Histogram Method

In the single histogram method, (6) one performs a canonical ensemble
simulation at a fixed temperature T0, and collects the histogram H(E). The
histogram is proportional to n(E) exp(−E/kBT0), so an estimate to the
density of states is obtained from

n(E) 3 H(E) exp 1 E
kBT0

2 . (71)

Once we have the density of states, we can use it to evaluate thermo-
dynamic quantities at any temperature.
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Unfortunately, since H(E) is approximately a Gaussian function with
mean OEPT0 and variance kBT

2
0cN, where c is the specific heat per spin, the

accuracy of the estimates deteriorates exponentially outside the energy
window of order `N, cf. Fig. 6. Detailed error analyses for energy and
specific heat are given in refs. 32 and 33. The region of good accuracy
coincides with the critical region at a second order phase transition, so the
single histogram method is still an extremely valuable tool to study phase
transitions.

The transition matrix approach can also be used in a way similar to
single histogram method, i.e., collecting the statistics of the transition
matrix in a canonical simulation. Numerical comparison suggests that the
two methods are comparable in accuracy. In fact, as we can see in Fig. 6,
for a certain interval, the transition matrix gives results which are up to 10
times better, but become comparable or worse outside the limited range of
E. If we use the two results to compute the average energy or heat capacity,
we found that the errors are about the same. (27) The reason is that the con-
tributions to errors are dominated by the tails of the histogram distribution
H(E), at these ranges, the density of states is of comparable accuracy.

It is somewhat disappointing that the single histogram method and
transition matrix Monte Carlo analysis are of the same accuracy. Some
improvement can be made by a careful analysis using Baysian method. (34)

But it is unlikely that we can bring about an improvement of order`N for
the accuracy.

Fig. 6. Errors in the density of states for a 32×32 Ising model from a canonical simulation
at kBTc/J % 2.269, with 106 Monte Carlo sweeps. The dotted line labeled FS is by single his-
togram method; the solid line labeled TMMC is obtained by energy transition matrix with the
same simulation. The relative error is computed from |n̂(E)/n(E)−1|, where n(E) is the exact
value, n̂(E) is Monte Carlo estimate, and the error is an average over 48 simulations.
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5.2. Multiple Histogram and Multi-Canonical Methods

Both of the multiple histogram method (7) and the multi-canonical
method (8) give density of states over a wide range. While the multiple his-
togram method uses a collection of standard canonical simulations, the
multi-canonical method uses only one simulation. In reality, a multi-
canonical simulation needs to be iterated few times to converge to the
desired ensemble. In this respect, the flat histogram method takes at most
three iterations. The first iteration already gives excellent results, although
there are noticeable biases for large systems; the second iteration with fixed
flip rates greatly improves the accuracy; the third iteration would give
correct sample average for the transition matrix as well as correct multi-
canonical ensemble.

The additional benefit of using the transition matrix is improved
accuracy comparing to other methods, within the same simulation runs.
Figure 7 shows the accuracy of the density of states for a two-dimensional
Ising model on a 16×16 lattice. We note that the accuracy is sensitive to
the constraints imposed with the optimization. This extra accuracy comes
about due to the nature of the samples that are taken. In histogram or
multi-canonical methods, each new state gives one count in the histogram,
while N counts are collected from each state for the matrix. Naively, we
expect an improvement by a factor of N in terms of the variance, since
each state contributes 1 for the histogram, and each state contributes a

Fig. 7. Errors of a single simulation in the density of states for a 16×16 Ising model from
algorithm −1 (Lee’s dynamics). The Monte Carlo sweeps for the simulation are 4×107. The
density of states are calculated by (a) Berg’s method, (b) transition matrix with normalization
constraint ;E n(E)=2N, (c) transition matrix with the constraint of groundstate degeneracy
n(0)=2, and (d) transition matrix with both constraints of (b) and (c). Due to symmetry, only
half of the data are plotted.

270 Wang and Swendsen



number of O(N) for the transition matrix. While the accuracy of the tran-
sition matrix elements does improve as the system size increases (maybe by
1/`N for the error), as has been pointed out by others, (35, 36) this accuracy
is lost in the density of states. This is due to accumulation of errors, as the
transition matrix elements only determine the ratio of the density of states,
cf. Eq. (55). If we use a simple iteration method starting from the ground
state, we see that this extra accuracy in the matrix elements gets canceled
exactly by the accumulation of errors. However, the optimization methods
of determining n(E) make the error analysis difficult. Here are some quan-
titative comparisons. We take the exact multi-canonical rate (algorithm
−1) in simulation, and collect both the transition matrix and the histo-
gram. With transition matrix, the average relative errors of the density of
states defined by Eq. (61) for the two-dimensional Ising model of size
L=4, 8, 16, 32, and 50 with 106 Monte Carlo sweeps in each run are
0.0003, 0.0012, 0.0037, 0.011, 0.024, respectively. The corresponding results
computed by histograms are 0.0033, 0.010, 0.027, 0.058, 0.10, respectively.
In general, transition matrix method performs better than histogram based
methods, as we have shown numerically.

5.3. Transition Probability Methods

A proposal to use the transition matrix was given by Smith and Bruce (37)

in 1995 in connection with multi-canonical simulation. This is further
developed by Fitzgerald et al. (38) The canonical transition probability (CTP)
method (38) also estimates the transition matrix and uses energy detailed
balance equations to estimate the canonical distribution. In the simplest
version, instead of collecting the histogram H(E), a matrix H(E Q E −) is
incremented by 1 for every Monte Carlo move from state with energy E to
state with energy E −. Clearly, this quantity is an estimator of h(E) T(E Q E −).
The transition matrix is obtained by H(E Q E −)/H(E). Both of the above
methods and the present method are similar in that the transition matrix is
used. However, there are two important differences: (1) in CTP method,
only the current move is used for statistics, not all possible moves of the
state; (2) the simulation is performed in canonical ensemble at a given
temperature. Due to these differences, we do not believe CTP method is as
efficient as our methods.

5.4. Wang–Landau Method

Very recently, Wang and Landau (39) proposed an intriguing method to
determine the density of states. The dynamics follows the usual multi-
canonical simulation or entropic sampling, by the single-spin-flip rate
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min(1, n(E)/n(EŒ)). However, n(E) is not a constant, but is updated at
each step of trial move with

n(E) P n(E) f (72)

for the current energy E. This is somewhat like the Lee’s method of entro-
pic sampling, but to some extent the updating of the weights are done at
every move. If f were greater than 1, the algorithm would never converge,
so the idea is to reduce f after some Monte Carlo steps, by f P f1/2, for
example. A criterion of flatness of the histogram was used to determine if f
should be reduced.

Wang and Landau’s idea can be adopted in the context of transition
matrix. For example, we can consider updating the logarithm of density of
states, S(E)=ln n(E), using the information from the transition matrix by

S(E) P S(E)+g(Spred(E)−S(E)), (73)

where 0 < g < 1 is some small parameter and

Spred(E)=
1
M

C
EŒ

1S(EŒ)+ln
T.(EŒQ E)
T.(E Q EŒ)

2 (74)

is the predicted logarithmic density of states, based on M possible hops
from EŒ to the current E. If we already know the ground state degeneracy,
we can fix it to the constant. Unlike the updating rule n(E) P n(E) f
which makes n(E) grow indefinitely, S(E) will converge to the exact value.
This generalization does give more accurate results than algorithm 0 if it
converges to flat histogram. However, it appears to have the problem of
sticking to a Gaussian-like distribution for the histogram for large systems.

We made an extensive test of the accuracy of the random walk algo-
rithm of Wang and Landau. On the system sizes from L=4 to 50, the
random walk algorithm is inferior to the flat histogram algorithm in terms
of accuracy and rate of convergence to flatness. For the original imple-
mentation of the method, once the system passes the transient period, the
error becomes independent of the total Monte Carlo steps used and the
system sizes, and is primarily determined by how slowly f is reduced. This
feature is useful for its robustness, particularly for large systems. In fact,
the result in ref. 39 for a 256×256 Ising model is very impressive. It is
possible that with careful control of the simulation parameters, the random
walk algorithm performs better than transition matrix Monte Carlo for
very large systems.

In Fig. 8 we plot average errors in the density of states as defined by
Eq. (61) for fixed Monte Carlo sweeps of 106 (2×106 for the two-stage
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Fig. 8. Average relative error in the density of states of the two-dimensional Ising model for
various sizes at fixed Monte Carlo sweeps. The two-stage algorithm (N) used 2×106 Monte
Carlo sweeps (106 for stage 1 with algorithm 0 and 106 for stage 2 with algorithm −1, using
the result of n(E) of stage 1 as input). The Wang and Landau method (I) and the N-fold
way algorithm 0 flat histogram (g) used 106 sweeps, respectively. The parameters used in the
Wang and Landau’s program are 80% flatness criterion, f0=2.718, fmin=1, and checking for
flatness at every 103 sweeps.

algorithm). It is clear that all methods have bigger errors for larger systems.
But the random walk algorithm is generally order of magnitudes worse
than the best transition matrix based methods. The sharp increase of the
error with system sizes from 16 to 32, and to 50 for the random walk algo-
rithm is an indication that with 106 sweeps, the system is still in transients
for these sizes. If 107 Monte Carlo sweeps are used, the random walk algo-
rithm comes closer to the accuracy of algorithm 0 at size L=50. The two-
stage method (algorithm 0 followed by algorithm −1, both using N-fold
way) gives the best performance.

6. GENERALIZATION AND SOME COMMENTS

The present method has been applied to the study of a lattice protein
model. (40) The transition matrix approach can be used for continuous
degrees of freedom. In such applications, both the dynamic variables and
energy spectrum have to be discretized. Muñoz et al. have applied the
broad histogram method to the XY model. (41) The important issue here is
how to control the numerical error caused by discretization. Some inter-
polation schemes may be useful in such simulation.

It is straightforward to generalize the transition matrix to more than
one macroscopic variable, such as energy and magnetization; in fact, this
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has already been done (42) with the broad histogram method. This approach
may have problems, particularly when the Hamiltonian is complicated.
First, the matrix may be too large to handle in general. Second, with more
elements to fill, the statistics for individual entry is poor. This makes the
method less robust.

The transition matrix simulation can be parallelized very efficiently,
where each processor works on separate configurations, using and updat-
ing a common transition matrix. Each processor can be limited to work
on a range of energies. The advantage of this is clearly a fast way of
approaching the flat distribution for the histogram. Parallelization can be
the most attractive approach for simulation of very large systems.

7. CONCLUSION

Starting from the detailed balance equation, we have formulated the
transition matrix in energy. The infinite-temperature version of this matrix
serves as the basic data from which we determine the density of states and
at the same time is used for construction of flat-histogram and equal-hit
algorithms. This method of simulation together with optimization method
to determine the density of states offers a better way of computing ther-
modynamic quantities by Monte Carlo simulation. In such an approach,
a single simulation produces the whole function of temperature (or other
parameter of the model) through re-weighting. It is efficient and easy to
implement. As the use of accumulated average for the transition rates
causes slow convergence and bias for large systems, a two-stage iteration is
recommended and is enough to get the best convergence. Dynamically, the
flat-histogram algorithm for long simulations is equivalent to the multi-
canonical method. Using the equal-hit algorithm together with N-fold way
offers additional benefits.

APPENDIX A. EXACT EXPRESSION FOR THE ENERGY TRANSITION

MATRIX IN ONE DIMENSION

We consider the single-spin-flip dynamics with a random pick of spins
and the Glauber flip rate

a(E Q E+DE)=
1
2
51− tanh

DE
2kBT
6 . (A.1)

In one dimension for the Ising model, the quantity ON(s, DE)PE can be
evaluated exactly. Let us first define a set of new variables ni=(sisi+1+1)/2.
ni is 1 for a satisfied bond, and 0 for an unsatisfied bond. The mapping
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from s to n is unique modulo an overall spin up-down symmetry. We
assume periodic boundary condition and lattice size N to be even. There
are three possible energy changes, −4J, 0, +4J. If the original spin of a
site and the spins of two neighboring sites all have the same sign, it contri-
butes one count for the total N(s, 4J). In terms of ni, it requires two con-
secutive satisfied bonds, i.e., nini+1=1. Thus we can express N(s,+4J) in
terms of ni as

N(s,+4J)=C
N

i=1
nini+1. (A.2)

Note that only N−1 variables ni, i=1, 2,..., N−1, are independent (since
;N

i=1 ni must be even).
A microcanonical average at energy E needs to be carried out. Let us

use k to label the equally spaced energy levels, k=0, 1, 2,..., N/2. Then
E=−NJ+4Jk, and ;i ni=n=N−2k. The microcanonical average can
be expressed as a summation over all ni subject to k=(E/J+N)/4 being
an integer constant. Thus we have

n(E)ON(s,+4J)PE=2 C
; i ni=n

C
N

i=1
nini+1, (A.3)

and similarly

n(E)ON(s, −4J)PE=2 C
; i ni=n

C
N

i=1
(1−ni)(1−ni+1). (A.4)

The factor 2 is due to the two-to-one mapping from s to n. In order to
compute the above sums, we consider the statistical mechanics problem of
a one-dimensional lattice gas with the Hamiltonian,

H=−E C
N

i=1
nini+1 −h C

N

i=1
ni. (A.5)

The partition function of this system (at 1/kBT=1) is

Z=C
{ni}

exp 1E C
N

i=1
nini+1+h C

N

i=1
ni
2 . (A.6)

Taking the derivative with respect to E, we have

“Z
“E
:
E=0

= C
N

n=0

1 C
; ni=n

C
N

i=1
nini+1
2 ehn=C

N

n=0
D+

N−n
2
mn, (A.7)
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where m=eh. The desired quantity is obtained from the generating function
Z as ON(s,+4J)PE=2D+

(E/J+N)/4/n(E). The partition function is obtained
by the standard trick of transfer matrix. We find

Z=lN++lN− , (A.8)

where

l± =1
2 (1+meE±`1+4m−2meE+m2e2E) (A.9)

are the eigenvalues of the matrix

5 1 `m

`m eEm
6 . (A.10)

After some algebra, we find

“Z
“E
:
E=0

=Nm2(1+m)N−2=N C
N−2

n=0

(N−2)!
n! (N−2−n)!

mn+2. (A.11)

Thus

n(E)ON(s,+4J)P(−N+4k) J=2D+
k =

2N (N−2)!
(2k)! (N−2k−2)!

. (A.12)

A similar derivation from a slightly different Hamiltonian gives

n(E)ON(s, −4J)P(−N+4k) J=2D−
k =

2N(N−2)!
(2k−2)! (N−2k)!

. (A.13)

Combining the above results with the density of states for the Ising model,
n(E)=2 N!/[(2k)! (N−2k)!], which is readily obtained by the combina-
torial problem of putting 2k unsatisfied bonds in N places, we obtain the
expressions given in Eq. (65) and (66).

APPENDIX B. TRANSITION MATRIX DYNAMICS IN THE

CONTINUUM LIMIT

We start from the dynamical equation

“ h(E, t)
“ t

=C
EŒ

h(E −, t) T̃(E −Q E), (B.1)
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where time t is continuous but energy E is discrete. The aim is to consider
the continuous energy limit. This limit is natural and is a very good
approximation for large systems. We follow the general method known as
W expansion. (43) Let us introduce a new variable,

x=
E−Nu0

`N
, (B.2)

where u0 will be determined later. Since E is of order N, naively x is of
order `N. However, by choosing u0 to be the average of E/N, we cancel
the leading N dependence; x is actually of order 1, measuring the relative
fluctuation around mean. We look for nontrivial solution in variable x in
the scaling limit of N Q., keeping x fixed. More precisely, we find equa-
tion in x such that the coefficients of the differential equation are indepen-
dent of N. Consider the function in terms of x as h̃(x)=h(Nu0+x`N).
We also write T̃ in x as

T̃i(x)=T̃(Nu0+x`N+ia Q Nu0+x`N), (B.3)

where i=0, ±1, ±2,..., ±d is the change of energy associated with E −, and
E −=E+i a, a=4J. We assume a d-dimensional Ising model in the deriva-
tion. Replacing E by Nu0+x`N, E − by Nu0+x`N+ia, Eq. (B.1)
becomes

“ h̃(x, t)
“ t

= C
i=0, ±1,..., ±d

T̃i(x) h̃ 1x+
ia

`N
, t2 . (B.4)

The crucial step now is to take Taylor expansion assuming a/`N small,
and to find equation that is leading order in the large N limit. For nota-
tional convenient, we shall drop the tildes on T̃ and h̃, which actually
denote different functions.

We know in the limit N Q., h(x, t) and Ti(x) are smooth functions
in x. Then (omitting the variable t for clarity)

h 1x+
i a

`N
2=h(x)+

ia

`N
h −(x)+

1
2
1 ia

`N
22 h'(x)+O(1/N3/2) h'Œ(x).

(B.5)

The primes denote derivatives with respect to x. We should note that in the
large N limit with x fixed, h(x) and its derivatives do not contain N. The N

Transition Matrix Monte Carlo Method 277



dependence is made explicit by the above expansion. Substituting Eq. (B.5)
into Eq. (B.4), we have

“h(x)
“t

=A(x) h(x)+B(x) h −(x)+C(x) h'(x)+O(1/`N) h −−−(x), (B.6)

where

A(x)=C
i

Ti(x), (B.7)

B(x)=C
i

Ti(x)
ia

`N
, (B.8)

C(x)=
1
2
C
i

Ti(x)
(ia)2

N
. (B.9)

Naively, since T is O(N), we expect A(x) ’ O(N), B(x) ’ O(`N), and
C(x) ’ O(1) and the equation does not have a well-defined large N limit.
But this is not true, due to special relations among Ti. Two relations are
important in the derivation below to show that both A(x), B(x), and C(x)
are of O(1) and the third derivative can be dropped in the large N limit.

The existence of an equilibrium implies

C
E

T̃(E −Q E)=0. (B.10)

Expressed in Ti(x), it is

C
i=0, ±1,..., ±d

Ti
1x−

ia

`N
2=0. (B.11)

Thus, using T0(x) from the above

A(x)=T0(x)+C
i ] 0

Ti(x) (B.12)

=C
i ] 0

5Ti(x)−Ti
1x−

ia

`N
26 (B.13)

=C
i ] 0

5T −i(x)
ia

`N
−

1
2

T'i (x)
(ia)2

N
+· · · 6 . (B.14)
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The last equation above used a Taylor expansion. Since Ti(x) has a scaling
form Ti(x) % Ng(x/`N) in the large N limit, we find that the kth deriva-
tive of Ti(x) at x=0 is of order Tk

i (0) ’ O(N1−k/2). Thus T −i(x) is of order
`N, and we can safely replace x by 0, and find

A(x)=3C
i

T −i(0)
ia

`N
4+O 1 1

`N
2=A+O 1 1

`N
2 . (B.15)

For B(x), we make an expansion in x for Ti(x) and find

B(x)=C
i

Ti(x)
ia

`N
(B.16)

=C
i

3Ti(0)
ia

`N
+T −i(0)

ia

`N
x+

1
2

T'i (0)
ia

`N
x2+·· · 4 , (B.17)

where in the last formula, the first term is of order `N, the second term is
of order 1, and last term is of order 1/`N. If the first term were there, we
would have an ill-defined limit. So we must require that

D=C
i

Ti(0)
ia

`N
=0. (B.18)

This is in fact a condition to fix u0. We shall show that this condition
requires u0=OE/NPT, the canonical average of energy per spin.

We evoke the energy detailed balance equation, (15). In terms of the
new variables x and i, it is

Ti(x) heq
1x+

ia

`N
2=T−i
1x+

ia

`N
2 heq(x). (B.19)

Let d=ia/`N, Taylor expanding the terms involving d, we find:

Ti(0)−T−i(0)=−Ti(0)[ln heq(0)] − d+T −−i(0) d+O 1 1
N
2 . (B.20)

Note that the first term is of order O(`N), the second term of order O(1).
It is important to realize that we are looking for the scaling limit of N Q.,
fixing x.
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Substituting this equation into the expression for D, we find

D= C
k=1, 2,..., d

[Tk(0)−T−k(0)]
ka

`N

% C
k=1, 2,..., d

k2Tk(0)[ln heq(0)] −
a2

N
. (B.21)

The requirement that D=0 is equivalent to say that x=0 is at the extreme
of equilibrium probability distribution.

When the first term in B(x) is set to 0, we have

B(x)=3C
i

T −i(0)
ia

`N
4 x+O 1 1

`N
2=Ax+O 1 1

`N
2 . (B.22)

The coefficient C(x) is a constant to leading order in N:

C(x)=
1
2
C
i

Ti(x)
(ia)2

N
(B.23)

=
1
2
C
i

3Ti(0)
(ia)2

N
+T −(0)

(ia)2

N
x+· · · 4 (B.24)

=
1
2
C
i

Ti(0)
(ia)2

N
+O 1 1

`N
2=C+O 1 1

`N
2. (B.25)

The equilibrium distribution of energy for large system is a Gaussian
distribution with mean OEPT=Nu0, and variance Nc̄ where c̄ is reduced
specific heat per spin, thus

heq(x)=
1

`2pc̄
exp 1 −x2

2c̄
2 . (B.26)

Substituting this result into the partial differential equation in equilibrium

“h
“t

=Ah+Axh −+Ch'=0, (B.27)

we find C=Ac̄. This same relation can also be obtained using detailed
balance equation. Changing variables from t to t −=At and from x to
x −=x/`c̄ , we obtain Eq. (68).
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APPENDIX C. DATA FILE FOR ERRORS

The file below is the raw data for various errors. Formally this is not
part of the paper. We included here which could be useful for future
benchmarking use.

Convergence Test Data

MCDIS=-1, SIZE L=5, N-Fold-Way, 2D Ising, algo -1 to 12

e_T=sum | T - T_ex |

mcs -1 0 1 2 3 4 5 6 7 8 9 10 11 12

1 14.961 15.059 15.043 13.995 14.299 15.357 13.330 14.241 14.455 15.883 13.859 16.06 13.776 15.237

10 6.480 8.107 7.795 6.509 6.33 8.83 5.52 5.40 6.79 9.91 6.32 9.68 6.41 8.09

100 0.681 0.819 0.736 0.759 2.28 1.09 0.710 0.713 0.667 1.29 1.47 1.00 1.171 0.825

1000 0.188 0.204 0.210 0.234 1.50 0.320 0.221 0.221 0.199 0.226 0.581 0.227 0.370 0.256

1e4 0.0608 0.0644 0.0663 0.080 1.00 0.14 0.070 0.070 0.064 0.076 0.539 0.079 0.256 0.094

1e5 0.0181 0.0206 0.0215 0.030 0.698 0.070 0.0219 0.0224 0.0201 0.0246 0.5353 0.026 0.2136 0.0349

1e6 0.0060 0.0064 0.0070 0.0098 0.43 0.044 0.0067 0.0077 0.0064 0.0085 0.533 0.008 0.131 0.0144

1e7 0.00186 0.0020 0.0021 0.0040 0.357 0.0172 0.0024 0.0023 0.0021 0.0030 0.5342 0.0026 0.0926 0.0047

1e8 0.00062 0.00066 0.29 0.012 0.0842

same as above parameters, but with single-spin-flip (i.e., no N-fold)

mcs -1 0 1 2 3 4 5 6 7 8 9 10 11 12

1 16.448 15.26 15.263 15.178 15.307 15.31 15.18 15.31 15.41 15.30 15.31 15.31 15.54 15.30

10 9.329 9.162 9.165

100 1.286 1.583 1.599

1000 0.287 0.312 0.310

1e4 0.093 0.097 0.095

1e5 0.0287 0.0311 0.0314

algo no (error at N-fold mcs=1e4)

best -1 (0.061)

very good 0,1,7 (0.065)

good 5,6,8 (0.07)

OK 2,10 (0.08)

not so good 4,12 (0.1)

bad (converge) 3,11 ( > 0.25)

don’t converge 9 (0.5)

All the rest has MCDIS=0 (no MCS discarded)

2D Ising model, e_n=(1/(N-1)) sum | n(E)/n_ex(E) - 1 |

algo 0 (N-fold-way)

Transition Matrix Monte Carlo Method 281



mcs L=4 L=8 L=16 L=32 L=50

1 1.200

10 0.152 1.38^

100 0.0340 0.212 1.3^

1000 0.0109 0.0492 0.20 1^

1e4 0.00342 0.0154 0.0568 0.28 0.31

1e5 0.00108 0.0054 0.0189 0.084 0.23

1e6 0.000338 0.00154 0.0066 0.07 0.22+/-0.02

1e7 0.000110 0.00051 0.0024 0.042 0.191+/-0.0138

1e8 0.000035 0.000190 0.0009 0.022 0.16

^wide distribution, occasionally not converging

tunnel 18.983 144.68 983 6448

time

2D Ising model, e_n=(1/(N-1)) sum | n(E)/n_ex(E) - 1 |

algo 1 (N-fold-way, equal-hit)

mcs L=4 L=8 L=16 L=32 L=50

1 1.20

10 0.142 1.27

100 0.0410 0.178

1000 0.0134 0.051 0.26

1e4 0.0042 0.0152 0.048 0.18^ 0.4

1e5 0.00138 0.0050 0.015 0.04 0.12^

1e6 0.00044

1e7 0.00015

2D Ising model, e_n=(1/(N-1)) sum | n(E)/n_ex(E) - 1 |

algo -1 (N-fold-way) (exact rate, best we can do)

mcs L=4 L=8 L=16 L=32 L=50

1 1.32

10 0.131 14

100 0.031 0.18

1000 0.0097 0.038 0.16

1e4 0.0030 0.0125 0.041 0.13 0.23

1e5 0.00096 0.00383 0.0121 0.037 0.07

1e6 0.00031 0.00119 0.0037 0.0114 0.024

1e7 0.000095 0.00040 0.00122 0.00337 0.007

1e8 0.000032 0.000103 0.00045 0.00091

Ising model, same as above algo -1 N-fold-way, but use histogram to

compute n(E), i.e., Berg/Lee method

mcs L=4 L=8 L=16 L=32 L=50

1e5 0.010 0.033 0.0733 0.32 0.5

1e6 0.0033 0.0099 0.027 0.058 0.10
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2D Ising model, e_n=(1/(N-1)) sum | ...|

two stage simulation, stage 1, using algo 0,

stage 2, using algo -1 of n(E) generated from stage 0.

same run length for the two stages

mcs L=4 L=8 L=16 L=32 L=50

100 0.0311 0.26

1000 0.0096 0.0404 0.10

10000 0.0030 0.0122 0.0401 0.2 0.5

1e5 0.00100 0.00349 0.0131 0.038 0.075

1e6 0.00036 0.00123 0.0034 0.0133 0.017

1e7 0.00038 0.0016 0.0029 0.0074

1e8 0.0004 0.0010

Modified Wang FG/Wang JS method (algo 13’), e_n=(1/(N-1) sum | ...|

using S(E) < - S(E)+eta (S^pred - S(E))

(eta=0.1) (two numbers - using Tmatrix/using S(E) directly)

mcs L=4 L=8 L=16 L=32

100

1000 0.00936/0.358

1e4 0.00306/0.0087 0.39/0.96

1e5 0.00096/0.0028 0.0039/0.015 0.99/0.99

1e6 0.00115/0.004 0.71/0.99

1e7 0.00049/0.0014

Wang Fugao’s program (fixed MCS, f_max=2.718, f_min=1, 80%H, check every 1k

sweeps)

e_n= < | n(E)/n_ex(E) - 1 | >

mcs L=4 L=8 L=16 L=32 L=50

1e4 0.172 10^

1e5 0.065 0.073 1

1e6 0.066 0.049 0.066 0.36 9(+/-4)

1e7 0.055 0.073 0.043 0.05 0.18

1e8 0.069 0.047 0.07 0.025 0.14

Wang FG method e_n (my program algo 13, 80%H, checks 30 times, single-spin-flip)

mcs L=4 L=8 L=16 L=32 L=50

1e4 0.079 1.62

1e5 0.034 0.071 0.7

1e6 0.012 0.031 0.056 0.42 5.5

1e7 0.0044 0.010 0.025 0.06 0.14

1e8 0.0013 0.02
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